
A major purpose of the
Technical Information Center is to
provide the broadest dissemination
possible of information
DOE’s Research and
Reports to business,
academic community,

contained in
Development
industry, the
and federal,

state and local governments.
Although portions of this report

are not reproducible, it is being
made available in microfiche to
facilitate the availability of those
parts of the document which are
legible.

‘3



TITLE, A METHODOLOGY FOR FABRICATION OF INTELLIGENT DISCRETE-EVENT
SIMULATION MODELS

AUTHOIW): J, D, Morgeson
J. R. Burns

LA..~R_- 87-2602

1)1’:070131’/7

SUBMITTED TO: 1987 IEEE Confcrcncc on Systems, Man, and Cybernetics

l)ls(’l AihlER

11.1 1! 1.,11 $$,1. l!l(, !,ll (!! , 11!,1 s4,111)1 ‘,1 n!llh .Ibdl.llrr’a! ll\ .111.lp,l l,\ !11 Ihc I II II IL’11S1.ill!’.

(,!). !..1!,,1, ,,1 N1.llh,l II , I !lll, (1 Sl,,l,,., f ;,,$,., ,1111(,11111,,1,11)$ ,l~vm \ !Ilcrrlll, 1)111.111}Ill Ikvll

4Illi,ll, },.1., Ill,lh! \ ,lll\ w.lll,lll l\, ( lpl,n~. ,11 II II II IIr I1. III J SIIIIIC* .I II\ ICH;II II JIIII II! l,r Icqbmw

1111111,1111IIw ;IL( 111,11\. , I II IIIlrlr IK.\\, III II\ I.l II IIW\S {)1 ;In) Inl,)rnl:ilii)ll, ilppiirutui, pr, mlucl, ~)r

1111.v~\ {11..I IIIWI, III Irlu .tIIl\ III; II IIS 11,.c WrIIIIIl m,! lnlrlnM1. pIlvJlcl} {wnct! r@t\. Refer

,.11,1, Ilt,lrlll Ill ;Illt \lM,( Ill> (Illlllll!.ltl,l I 111111111(1. pr, nr\\, i)r \crwlLc II* Irmk nnmc, I[mlcm;lrk,

Ill,llllllil( Illl(mr, Ilr ll!tlVr WIW (11BIh Ill)t llCLl,\\:llll} (’lllldiilltL’ IIr l!ll~l} I!t ClldlW\ClllCnt, rCClllll

IIIr IIIl,IIIIIn, ,)r I: IYII:IIIM II} IIIr I IIIIIWI SI,IIr\ f iiwcrnmcni (w ;IIIy :IgrIIry Ihcrcd “1hc vIcw\

.IINI IIpIIIIIIIII III ,luth,)r\ c!l)rc .\cI1 Iwrclf) 111111111ncwsslrll} \IiIIC or ICIIIXI IhII\C II( !hc

! :IIIIIVI S1.Ilr\ {itwrrnnlcnl i)r Nny iigcncy IIwrrol

~~~~[a~osbs.lam.s,NewMexic.87545

LosAlamos NationalLaboratory

JcnMw~~~l?m?u,~,~, MASTER ~
IN8TRIBUTKIN OF TH18 00CUMENT IS IIN1.IMITEII tf d

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



A HETHIJDOLOGY FOR FABRICATIOY OF I!: TELLIGEYT
DISCRETE-EVENT SIHUIATION HODELS

J. D, Horgeson
Croup A-5, ?laLl Stop F602

Los Alamom National Laboratory
LOS Alamos, !Iew MOXLCO 87545

J, R. Burns
College of Business AdMitIi9trdCiOI’I

Texas Tech University
P.O. Box ~320

Lubbock. Texas 79A09-h320

~. A methodology for formulation of in.
tolligent discraca next ●vant simulaclons 1s
presented. An appropriate clase of probloms is iden.
cifted, The relevant literature 1s c~tad and no:~ons
are borrowed from eoftwar, ●ngineering ae well as
knowledge engineering.

Thin arcicla Pra8ants a ❑ata”requlremen:o
specification for fabrication of ❑edium to large in.
ttlligenc diecreco next-evant $imulation models. It
fl:et doecrtbea what is currencly known about the
ecaca of the ❑odel.formulaclon arc in discret~ next.
●vunt eimulatlons. IC incorporates what hae been

recently learned (at Loe Alarnoe) ●bout formulation of
[intelligent diacreta.evant simulaclons chac ucllizo
concopcs borrowed from object.orimnted programming,
accor paradigms, and rule-oriented programming.
Moreover, it borrowe from design methodologies found
in ?he software engineering ●nd knowledge ●ngineering

Ilteraturc. Through synthernls of concepts and
mett.odoLogloe from these dlsclplinee, a methodology
has been daveloped that i~ consistent, comPLete, and
,lppr~prlatafor the problem classes and user sophl~.

ciration Levelr for which it wae intended.
The design methodology presented herein ie in.

tended ro he both floxthle and adaptive in the Sense
that the end.ueer le given an opportunity to see ●

porclon (or ,111) of the model working before rhe final
product i~ dallvored. In the sam- vein, tha ●nd.user

1s permlttod to crlcique the model and euggeat chanr=e
w+~re appropriate ●ven if thoea change- run counter t.o
e~rlier specificatiuna generated by the end-user,

Second, in the interest of dovelopmenc ●f.
ficlency, the design methodology i~ intandmd to take
full advantage of procotyplng methodologies ●vailable
[n some ●xpart system shells and environments.

Specifically, the LISP/KEE environment wae used in
this rae-arch This environment parmlca rapid n,odel
developmen~ and turnaround eo :hat end-uear feedback
cnn be readi~y incorporated, The environment nlsu

qupporcm an objact.oriented programming approach EO
●oftwara davolopmant. KEE intcgracee fr.ame.haoed and

uulm.b~nad reaeonlng techniquap to d-scribe knowledga
structure and bohaviora quickly, The Crnme.baned
~yntnm anebla~ one co inclu~la descriptive ●nd prnca.
~!ural knowlccige with mhth ,Ib)ect,

Tahie 1 is the outlina form of rho r~ethdology FO
he ptenontecl, which conaiets of a noftwara raquira.
montfi ■peclficatlon and a softwara dasign
rnpeclfication, The ■taps listed in Tablo 1 will b.
?erognizod as tha convention~l procaduro undertaken in
momt sot’fwara my-teas mnalyses ●nd defilgna, It 1- how
t},eeo etapfi ate actomplishod in tho context of ohjact.

orionted and rula.baaed programming that ❑akne tho
,~ethodolngy to ba pre~onted unique,

ives

The primary objectLve of thie arciclg 19 to
present a methodology for design, development, and
documencaclon of intelligent discrete.naxt event (also
called knowledge.basad ) simulation modele.
Intelligent 9imulaCions aro ●ppropriate for plannlng
and orchestration of syetems involving one or more in-
telligent and rational decieion-making anticies. This
●rticle ●pecifiee the format that eofcvare require-
ment and design documents ehould take and suggests
methodologies for accomplishing the ●nalyses,

W-user ~lQM

We ehall ●eeuma cha ultimaco user (termed the
“end-user”) of tho simulation software produce to be
one and the same on both the input and output ●xtremes
of che model, Furchermorm, we shaLl aeeuma that che
modal has b~on fabrlcatod by teams of ●nalyecs and
des~gners ochor than tho ●nd.user, Hence, tho end-
ueer ●ncere tho ntcoeeary inputs to epocify the
paramecere of tho run, and tha policiee ●nd plane co
bc in ●@feet, prior to tho ●ctual run. The end.[,ser
may wish to interact with the ❑odel during its execu.
tion, And, the and.user interpracs the computer.
generated outputs and reports produced oy the modal
following its exacuCfon, The ●nd.user(s) will likely
be different from the

Table 1. A Suggested flethdology for Intelligent
Simulation

SOFWARE REQUIREMENTS SPECIFICATION

1, Problem Statement

1,1 Verbal Description
1,2 Statemant of Purpoeo
1,3 Detniled f@atlons to he Addrnseed
l,L ll~er Per9pectiq:e

2, Systmm Dev. riptlon

1, Functional Rnquirmments

3,1 llardw#ro/Softw4ro Collstr#int.q/

Requirements
3,2 tlajor Model Inpute/Outputrn
1,1 User Interface
),6 Executiotl/Pe:fnrmancn

SOFIWAM DESIGN SPECIFICATI13N

1. Event Architactura Deeign

2 DetmiLed Data Structuro Deeign

2,2 Data Structures for rhe
Prototyping LanRuage

2,3 Data 9tructurt# for the
Production Language



3. Event Internal Structure Design ?fechodolozv for !4odel SDeci ficaciou

3.1 Specification of Rule.Sets
within Cogniclve Events

6. Spec!.fications for Verification
and Validation

5, Model Tr.snelation (Coding) Phasa

6. Software Debugging and Verification Phase

7. User Satisfaction Testing, ?todificaclon,
and Validation Phase

The requirements and design methodology
presented herein is appropriate for moderate co large
model devaloprrrar.t projec.s involving formulation of
intelligent, discrete next-event simulation models,
Problems involving systems whose actual behavior is
strongly influel.ced by extensive “endogenous”
decision-making which must therefore be modeled in
detail are most appropriate. Thus the systems of in-
terest may entail several decision.making entities,
each capable of making rational decisions which
strongly Lmpact upon the ultimate state of the s)~stem
,ss well as tha sequence of activities engaged in bv

the entities,

There are three relevant areas of literature
which mathodologlcally contribute co the concent of
this arctcle. They are the softwars engineering

literature, the slmulatton literature, and the litera-
ture on knowledge englnee:ing

T!re simulation literature Is replete with
methodologies for modul formulation, The methodology
described hzreln is unique because it incorporates
object.oriented programming which permits explicit
consideration of actors whose cteclsioils strongly lm-
pacc !Ipon the performance of the svscem rind, hence,
musF bn included in a robust mcdel of the system, The
!Ise of rule bases and rule basa pro:esoing to repre-
~er,tt.ha andogenous leclsl~n.making of these actors
hns yec to be incorporated inCo the conv., ‘ionnl mo.’el
t’ormulation Inethodologles,

The softwara anglnnaring llteiaLUrO proscrlb~s
r-ho genat’al methodology for the design of any software
Systela, Throughout this literature there 1s a ~
mtichcrdologi.c.l concarn for aoftwaro development and
ieslgn taken in the l,arger context of the softwarn

Life Cycle!

Tha knovledgo englnearlng llter~tura sug~oete
techniquoa for knowledge acqulaitlon, reprcaontatlon,
And procemslng which are appropriate nnd useful for

Lncorporatlrrg judgmental knowledge into the model tt
polnte whore decleione invol’.ing human judgmelit mtint
b- modeled, In such contaxte a knowlorlgo engineer :,!~y
be requlrad to Cacilitsta tha extraction of knowledge

from probl~ra-domain ●xports, to datermine hov haqt tn
codify tho knowladge wlthln the mod-l, and to dsier
mlnn how tho knowiedgo YhouLd be proce~aed, The

knowledge procoernlng procedure rnhould bo analo~oue to
ths reasoning procoduros actually employed,

Consistent with generally accepted practices in
software engineering, the methodological framework
(see Table 1) for any software design begins with a
requirements specification phase, conti.nue~ with a
design spaclfication phase involving architectural and
detailed design, which is followed by verification and
valldacion of che design. Then a translation of these
specifications into program code takes place Ln the
coding phase, The working software is Chen verified
and validated through repeated interaction with the
intended end-users of the software and the problem.
domain experts until a satisfactory product is
obtained. The end-prcduct is documented with one or
more manuals which describe how to use the software as
well as one or more manuals which describe how Lo
maintain, upgrade, or modify che software,

S9fc ware Reo~clon r Phase

Inputs to the software requirements speciflca.

tfor, phase come from the end-users and the problem-
domain experts, i!\ this phase, the system analyst
cakea cheae inputs and uses them to specify and plan
the components, concent and concepts of che model.
The format for and procedures of the software require-
ments specificatl.on phase are described below,

The real.world system to be simulated 1S

(iescribed by t;]e problem-domain experts in sufficient
detail to enabLe a design team to fabricate detallad
specLflcacions for writing code sufficient tc model
che problem, The problem domain expert(s) may or may
n~c be che same as the Lntended end-user(s) of cha
model ,

!k’&Lkaxu&k3

Tho problem statement should begin with a verbal
(written) description of the proc.sss that is concise
yet daralled enough to communicate a “feel” for the
character and cortent ot’ the system to be modeled.
This doscrlptive scenario should contain sufflclont
L#ckground .snd his:ory to enable design and coding
anai,ysts to understand the “problem,”

Concept articulation is the essence of any
probldm st~temont, Ae such the problem stater.lent
qhoul~ carufully &rticulnt.s the pUKpOSiS of the model-
buiLdlnE activity, particularly as it relates to any
“problems,” “concerns,” or “difficulties” with the ob.

ject system, This 1s otten referred co ris tile need
onvlronment of ;he system And the scaten,tint of purpose
sho~ld :ef!ect a car~ful arralyaia of the tteed environ:
ment

lkLdlu.UQuuL.buuto be Mku.u.d

The problem otatement should then deflrre the
“tree” of mAJor And minor issues, conctsrns, isnd [luea-
tlone that need to ho addreesad by the simulation
model Major po~lcy and planning conslderatiuns to be
addresmed SI1OU1CI appear at. the top of thn tree,
whareas minor logistical, and operational quastions
shoul,d cppaar aa “leAves” at tho bottom of the tree,

EuCh major !ns\le Ls caLled ● ~~
or MFA Eor short, Each minor question to ba addro~sed

~:o;:Lled an ‘W*~tior ~~~ for
Each IIP.A is decomposed into concrl,butL1\g sub-

l~luea, and theme tare Ellrthec docompoaarl untli
q~~eetiona that aro cApabio of halng anawered dlrectlv
by tha modal ourpilt arn reAchecl, ‘T}\ese lattnr Luv.
l.evei qunstlone Are EEAe,



L’ser Pers Dect LVQ

An important component

is an explanation of whose
in the study. Normally, the

from the Perspective of the

of the problem statement

perspective is to be used
problem should be studied
end-user(s) of the model.

Identifyin~ who the intended end-users Of the model
are will usually determine whose perspective is to be
used as a basis for the study. The user’s perspectitre

along with the purpose of the model-building actLvity
and the issues to be addressed will be strong deter-
minants of the concent of the model itself.

S’fs cem Desc~

The system crI be slmulsted will be described in
co formance to an actor-cencered taxonomy chac 1s con-
sistent with object-oriented programming.

Traditionally, the “even:” has been the point in
tLme at which state changes in the modeling system
take place in discrete, next-event simulation, The
processing of an event was performed in an event
routine A dynamic portrayal of the behavior of the
modeled system was obtained by allowtng the events to

occur in their natural stochastic sequence thereby
causing state changes to occur.

The same ie tr~e of object-oriented intelligent,
discrete simulation, buc thera .ere difference

Central to the concept of object-orianted discrete
simulaclon is the objecc which we shsll hereafter con-
9i9tently call an ~ or The entire

structure of the model Ls defLned in terms of the
various generic actors and pseudo-actors that are in-
\,olved with the process to he modeled. Several actors
and pseudo-actors of a particular genre may rosl.de

within the modeled system at any time, We shall use

the term “actor” to refer to an ~ of a class of

actor and che term “actor class” when we wish to

define end create an enti~e cl.ase of actors.
GOnerally, we expect that actors are capable of ra-
tional declslon.making which will. impacc upon the
state of the modeled 9ystem and the sequence of ac-
clivities pursued by tha actor. On the ocher hand,

wu~o -J~ generaLly do not p@rform rational and
cognitive decisions that are of interest to the model,
Pseudo-actors may be thought of a analogous to en-

tities In the conventional discrete simulation
paradigm The moclei endeavors to replicate the ac-
ti~’ltles the actors (and pseudo-actors) engaga fn and
thereby portray the dynamic behavior of the modeled
sy.stem,

Associated with e~ch actor (or pseudo.ac~or) fire
dntisscructureg representing the actor’s isttrLbuces,
assats and cap.sbllttles, ae shown in Fig 1. The

state of the modeled system will be defined by the
dara strucr.uree of all of the actors and pseudo.actors
which maka.up the model of the system at any point in
time. The entire coLiectlon of ldentlfled ~ctrr
cl.assea 1s referred to as the @&g of iUJLLS.

Each actor clasa must then be defined and
described t. ●ccordsnca to the actor-centered doscrip.
tion presented in Fig. 1.. Each actor claam shouLd

first ba varbalLy defined in ganaral, Th.n the

asmets/*ttributas of t:loaccor claae, the capabllLtiee
of ths actor cLass must aL\ bn described as euggested

by Fig. 1! These components make up the data strut.

tura of tho ●ctor clasa. Each individual actor will

possnss this came generic d,tt~ structure that has been

[Ieflned for the actor class.

f--”-CO(;NIT VE PHYS’ICA[.

Fig> 1, llat.a.Structure of nuch Actor

——

An actor’s ~hvsieal CaDahi licie~ are categorized
as those which the actor is’ physically capable of

doing, Significant decision-making should not be em.
bedded in che description of an accor’s physical

capabilities,

An actor’s are described
in the form of well-defined cognitive acclivities, For
each cognitive capability and hence cognicive ac-

tivity, it is appropriate to define the eLemenc5 of
the associated decisions chac are to be Contemplated
within each cognitive accivfty, as shall be explained,

In addition to owning its own data structure,
each act?r or pseudo-ac:or will own a set of event5

and acti,viCfes. Specifically, each actor class will

own those activities and events whicl. the actor can
engage in.

TWO types of activities can be engaged in by an
act9r- -physical activities and cognitive activities.
These correspond to the actor’s physical find cognitive
capabilities which are delineated as part of che sys.
tern deacrip?ion. To suggest that an actor is capable
of an actLvity is tautologous to che assertion that
such an activity is owned by the ~ccor, An acti.<Lty
is a capability exercised by its actor.

Physical activities are the conventional form OE
~ctivicy around which traditional discrete next-event
simulation has been dmveloped. They are elementary
rasks with finite time durations. Cognitl,Je ac.
tivitLes are acclivities involving some form of
intelligent, rational decision.making. Like physical
activities, cognitive activities have finite time
durations which may be random, but could also be de.
pendent upon when certain information 1s ava!.lable or
,when a decision becomes urgent,

As in conventional discrete, next.event simula-
tion, each event is modeled by its own event method
(rolitlnes ~:e ca~lcd methods in object-oriented

programming). Events are of two ?.ypes--physlcaL and
cogrtlclve. These two types correspond to the two
types of “capabilities” of an actor. .physLcal and cog-
nltlve . Physical events are analogous tn trodition~l
event routines in conventional discrete simular.ion,
Cognitive event mathods, on the other hand, involve
knowladge processing anologous to the knowledge or
cognitive processing actuully performed by the ,lctor
in the conte,<t of a particular decision sltuatlou
Cognitive event methods wiLl cuntoln knowlerrgu repre.
sentad by Production rules and hnuristlcs which are
pror.eesad vhen the dec:sion represented by the cogni-
tive event must be nrade, There is an implicitly
assumed cognitive oodeL of rational decision.m.lkin~
wirhin each cogniti:e event method,

When ● physicaL event occ~rs, it may alter the

state of the model,,d syetem in the following ways. It
may change the ground truth accounting of
n.ssets/actribuces of its associated actcr, It may
chan~a the relationships that exist between the act.ocs
of the system, t{obover, it cannot chango the actlorr
space of the actor,

When a cognitive evsnt 9ccur9, a decision 1s
made to take certain nctiong now or in the f(~t,ure,
The “octione” that will be chosen wILL result tn Jc.
t(vitiee to bO engaged in or in Starr!-chang(!s, or
both, In addltLon, the ucsult of processlrlg i cofini.
tlve avent may be an lnform~tiort prod~lct or “p;,tn,”

S\tch ● plan may consist of actions t:o he carrted out
at soma point in tho futurn,

F:~LLowLng the actor-centerad ~ystem d~scrlprion,

rho anelyst ehould identify the distinct Fs~\do-actors

which maka up the rrystem ~~) be mo(~eLed. Tho ei\v IL’on.

mant in which the ~yatom is embnddnd i~ one s!i~h

psaudo.tictorl llILs descrlp~i~r cnn ~n~L’(da ‘r’t Lri”q

ilke tha weather, iand o her e!lvironm@ntal f~lcr[~rs

which have a significant impnct on the performmn~!r o~



m,ust be exercised here to insure that only those ac.
tivities which are significant for th”e purpose
cansLdered are included. Delineation of the Ac-
tivities should be accompanied by delineation of che

logical time sequence in which the activities would be
pursued. This should be performed for each identified
actor. Once the activities al,,d their time sequence
are identified, the delineation of the events in che
design specification phasa is explicitly determined,

Similarly, the capabilities and associated ac-
tivities of each pseudo actor should be carefully
defined and their time sequence specified. As for ac-
tors, this delineation will enable the determination
of appropriate events in the design specification
phase .

A template for performir,g the system description
is provided in Table 2,

Table 2. Template for the System Description

FHOSE PERSPECTIVE IS BEING USED AS A BASIS
FOR THE STUDY (LWO IS THE END-USER?)

. . . . . . . . . . . . . . . .~- --j .

LIST OF ACTORS

FOR FACH ACTGR, DO THE FOLLOWING:

LIST PHYSICAL CAPABILITIF.S
LIST WLNERABiLITIES
LIST COGNiTIVE CAPABILITIES MD DETERMINE ThE

ACTIVITIES THE ACTOR CAN ENCAGE IN
LIST ASSETS/ATTRIBUTES AND DETERMINE THE STATE GF

THE ACXCR
. . . . . . . . . . . . . . . . . . . . . .

LIST OF PSEUDO-ACTORS

FOR EACH PSEUDO-ACTOR, DO THE FOLLOWING:

LIST PHYSICAL CAPABILITIES
LIST VUIJERABILITIES

— . . .—

The functional requirements are J result of botF,

the iuser requirements document and ttser-developmer,t
team interaction. Thare are two categories of
concoL.n. .the hardware/softwnr9 configlurnti.on, the form
of model inputs/ourputs, ~nd model performance,

Modal inputs are of two types- .tl~ose that are
required to control the execution of the simulator,,
and those that repre~enc points of influence which a
decision.maker might have upon the actual sy~tem being
moclelad. a determln.aclon of the latter is very impor-
f.antt.ot.ha usablllty of tha model by the lntenrled
end.ub..r, and should be end-user defined, Thus the

end.user should be asked to specify the alterable,
tha polnta-of. influence by which the performance or
bohnvlor of! the object system can be changed. The9e
are hi:; of !\er j~ to tha actual system. These
poinc~-of .Lnftuenca must be wrftten into the raquire-
mants speci,flcation so they can ba designed into the
mods 1 In the documencatlon phasa, lt will be neces-
sary to ●pacifically describe tho type a(ld format of
the input~ which tho ●rid-user must supl,ly as part of
the pua.execution prepatatl,ons,

Nsxt, the outputs from the tnoial should ba
d@limated. Again, the ●rid-users must ha consulted
nnd naked to specify tha performance parameters that
Are obsermd Ln the actual system or which tho end-
uuer would lt,k. to observe if they could be measured,

A determination of the model inputs/ou~puts wIL1
!mpact strongly upon the contnnt And form of the data
find knowlodgo baanm required to support the si.mul,mtion
Lcodel ,

E&w&iQcLk&wTmu

Actual execucion of the simulation is preceded
by processing to setup whataver files are neces~arY
for the simulation run and followed by whatever
processing is necessary co obtain sufficient informs

tion from the simulation run. The post. ~xecution
processor will provide the essential ex ,lanation

facility chat 1S expecced of any “expert” s,stem,

$oit ware Desien Soecifi cation Phas~

The input to the Design Specification Phase is
the Software Requirements Document produced in the
previous phase. In this phase that document is trans-

formed into a model structure. This phase
traditionally (from a softwara engineering point-of.
view) consists of twO steps--architeccural design and
detailed design. We have broken detaiLed design down

into two subsceps- -detailed data structure design and
event internal structure design. (It should be noted
that , when developing discrete next-event simulation
models , these are usually the only two components chat
require detailed design, !loreover, each event
delineated in the architecture phase requLres a
separa;e event method be developed for it. )

~vep,t ArtitureP Desk

Event. architecture design refers to the collec.
cion of events employed to model the system and to
chelr initiation sequence as represented by an event
Initiation diagr,inr. The procedure for formulating
event initiation diagrams is the following:

For each actor or pseudo.actor identified in the
software requirements phase, list the events chat
accor or pseudo-actor will engage in. E~ch actor

centered event list sF-tld be easiky determined,
based upon the List of acti%itles and tha activity
sequence diagram specif!ed ‘.n the requirements

document.

Examine each llst of events to determine if any
will loglcally occ,ur at the same instant in time,

c~ v ace events owned by different

~ctors which occur at the exact same instant ~n
time,

Once agaLn, examine each list of events in terms

of the previously defined states of the mode Led
9ystem, Identify those events at Whicil the
modeled system does not undergo a state change.
Eliminate these. For each bLLininated event, do
the following, Since, an avent is a point in time
at which one actLvity ends and another begins, add
the activity time duration of the next activity to
the activity time duratLon of the prevtoua ac-
tlviry so as to arrLve at an equivalent actlvlty
which subsumes the two previous ttctivitlcs th~c
were separated by the eliminated evant,

For each actor or Dseuclo.actor identified in the
software requirements phoso daltneate tho event
initiation sequence by means of an event lnLtla-
tlon dtagran which :,tillzes the ltsts finalized in
step 3 above and the known loglcal snquence in
whtrh the events must occur, Designate those
events which represent declslon points ns cogni-
tive events.

A typical event [nLttatLon ci~n$rnm !s shown in
Fig, 2, The arrows >r edgee in the d!agcam dcqt~,n{lrn
“initiation,” Thus the event ASSESS SIT lnitilto9
(~chadulms) thn evnnts ASSESS.IW).KFFECTS and DECIDE-

MOVE, The Cognitive event DECTDE.MOVE wiLL make
certain decisions and, depending upon the outcome of
those decisions, will schadule DECIDE.RECON, t)lZClDK-
RCSUPPLY, DECIDL-REFIJEL, rind/or PREPARE.MOVE, For

each ●vent delLne*ted in the evsnt architecture sr~p.
a separate program module is assured, cal Led an w

lllaw ~



.

ASSESS-SIT

.,,,,,. / \,,,,,,.
RAD-EFFECTS HOVE

~~/ \

DECIDE- DECIDE- DECIDE- PREPARE

RECON RESUPPLY REFUEL ?!OL’E

Fig. 2. A Typical Event Initiation Diagcam,

malQumJw’t”” ‘J”f=

In order to serve the needs of the two distinct
approaches to ultimate encoding of the simulation
modal described in section 1. --Introduction, two ap-
proaches to data scructura design are possible. T%era

is space sufficient to describe data structures ap-
propriate only for LISP/KEE environments.

Auor&ce for /KEE Env~

KEE uses frames which are called ~ in Lta
knowledge representation schema. A separate unit is

used for each actor (each object) Assets, at-

cribuces, Vulnerabilities, capabilities, are described

by slots within each u,lit. Actor classes, super-

classes, and subclasses can be creat~.d as can
instances of each actor class, as shon in Fig. 3.

/

MAMMALS—HERBIVORES — cows

BIRDS
\ \Ho,,Es

/

CARNIVORES

\
&VItiLS+2 REPTILES ‘L1ONS

~F~s”

Fig. 3, An Inheritance Hierarchy in KEE

In FfR, 3, WW4ALS, BIRDS, And REPTILES Are actor

c lasses ~hose superclass is ANIMALS Moreover,

MAIMAL5 have two subclasses calied HERBIVORES and
CARNIVORES, There are two instances of !{ERBIVORFS-.
cOWS and i{ORSES, Note that solid lines denote
subclass, supr.rclass relatlonshlPs, whereas dashed

llnes denote “lnstanca of” relationships, These
relationships give risa to tha concept of lnheri.cance.

Thus classes of actors lnherlt the atcrlbutes (tha

slot values) of their superclasses, Generic actors

can be defined which pqss along tholr basic charac-

teristics to specific .ctor instances ae wall as actor

subclasses. It is possible for a specLfic actor to
override some characteristics, however.

The nctor’s assets and ,~ttr~butee are defined by
placlng values into slors! of tha associated unl.t.

Each physical and cognitive capability M de:lned by
placing the coda of the associated event method in a
9LOL.

There ●re two types of events associated wLch any
actor and these two event types parallel the two typee
of eapnbilitiee associated with any nctor--ptlysiccl
and cogniclvm.

Since event mc-.hcde lnltlata the occurr~nce of
other events, the accivicy duration tlmts.e and Clmes
becwebn occurrences of recurrent ●vents must be
specified in ccsnjunctlon with aach event. Most
llknly, these tlrnem are probabilistic or random and
describable in terms of e probability distribution, a
mean, and (sometimes) a et~ndard deviltion,

Tha followlng outllne it to ba used in tll~
detailed design of the lnttrnal etruc~ure of the ●vert
method,

ET.’ENT ?itiE
DESCRIPTION OF PURPOSE
PARAMETERS PASSED TO THE EVENT
ITEMS RETURNED BY THE EVENT
LOCAL VARIABLES FOUND IN THE EVENT
LoCAL FUNCTIONS USED IN THE EVENT
METHODS USED IN THE EVENT
EVE?JT C@DE STRUCTURE

The use of giction dia~ rarn~ as depicted in Fi5, 4
are an expedient to che design of che internal strus-
cura of each event method. Action diagrams are always
desirable whenever the logic of che event method is
not immediately apparent from the EVENT CODE STRUCTLRE
and/or ●he logic of the event is complicated. Action
diagrams dcconrpose the structure into logical unfcs
and delineate che type of processing to be ac-
complished by the unit, be it sequence, selection,
case struct~ra, repetition, concurrency or whatever,

- -*DECIDE-DECON
--PRE-PROCESSOR

REN&qE the launcher unit to current-actor

--END PRE-PRO?LSSOR

--PROCESSOR
FORWA.RD,CHAIN(K) DZCON-RULES

DECON-RULE-L
DECON-RULE-2

DECON-RULE-4
--ESD-PROCESSOR

--POST-PROCESSOR
RENAME the CURRENT-ACTOR to the launcher unit

--CASE action space INCLUDES GO-DECON THEN
REMOVE GO-DECON FROM action space,
RETURN a list to schedule DECON
for current simulation clock

CASE action srsace INCLUDES DECO?J-NOT.NECESSARY . .
THEN RE!40VE. DECON-tiOT. NECESSARY FROM action
space, RETURN a list to schedule END-SITE-PREP
for the current simulation clock plus a-site-
prep-tfme

..END POST-PROCESS02
--END DFCIDE.DECON

Fig, o. A “ry?ical” ActLon Diagram.

F,vent method logic consists of a prepruc9ssor, a
processor, and a poet pro-essor. The preprocessor
~111 resched~le the event if it is ~~.-i e.,
it 1s recurrent after the fashion of a classic
“arrival event. The preprocessor wIL1 also perform
whatever housekeeping c!etaiLs are necessary prior to

prnceeaing the evisnt loglc.
The proctssur of any cognlcive event will bock.

ward or forw~rd.chain any rules placed within the
proceneor 1,.~e’f ‘This wILL resuLt in changes to the
action space f the ~esociated nctor, As previously
mentiontsct, tt-.e ,ccion.space subsumes all of the po~-
slble actions that could conceivably bn taken by tile
Actor,

The poac-processor of nny co~nlulvo event wLLL
decide what actione to tske based IIpon che actor’s Ac-
tion space, It wi.Ll employ “casns,” Cases nre not to
ha confuaod with rulee which aue placed within thn
proceeeor of the event onLy,

~-~e-sewti

Ae shown in Fig, h, set9 of rules are plncod
,wl, t.hln the procosuor sagment of the cognlrivm WLIONE
mathod,, Ihle effectively parttticrne thn rule hnso IIp
into “aete” appropriate for pnrctculor actor ~,litsses
or actor inetanccm, Doing so ,$ontributoe gro{it,ly co
tha ●fficiency of KULS processing, slnca non-relevant



.
“ “ rules do not have to be searched. These rules are ac-

quired directly from tha problem domain experts who
also explain the reasoning processes implicit within
each rule set and processor. The problem-domain ex-
perts must also participate in the evaluation of the
performance of the artificial reasoning that is

codified into each cognitive event method.

It is considered desirable by software engineers
to perform a verification and validation of che re.
quirements and design specifications prior to model
trsinslacl.on. Doing so enables “problems” CO be idert-
tified and resolved early in the software life cycla.
By investing more up-front effort into verifyng and
validating thesa specifications, the entire project
will likely incur reduced coscs of testing and in-

tegration, higher reliability and maintainability, and
software that is more uaer-responsive.

Model Wmhr.bn~CoWuLthua

This phase involvee translation of the require-
ments and design specification into a working
simulation. Accomplished by the coding team, this
phase requires that actual line of code be written in
direct response to the design documcrrt developed by
the desian tsiam, Accual coding may be performed
within the USP/KEE environment which allows for rapid
protoryping,

Once all code hae been written and entered into
che compucer, it muse then be debugged and tasted by
the coding team, ‘Testing of the code must be thorough

so that all logic paths are exercised and examined for
authenticity and correctness. Once verification is

complete and the coding team which performs this phase
is convinced that the model conforms to the desLgn
specifications from both structural and behavioral
points of view, it 1s ready to be examined by the
problem domain experts and end-users, which 1s the
next phase.

The working LISP/KEE prototype Le submitted to
end.users for examination and evaluation. At this

juncture, a verified simulation modal is to be
validated in terms of lts approprl~teness, accuracy,

and authenticity ot’ representation, Any significant

departure from perceived reallty results in modlfica.
tiont and embellishments to the model, It 1s at this

point that the previous phases become adaptive, and
tha speciflcationa developed within these phases may
undergo revision. The model itself must be reviond to
conform co the revisions in the specifications.
Several Lterations of this type may be required to
achieve a satisfactorily valid result.

In this study, implomentat~on begin? with tr*ns-
Iation of tho LISP/KEE prot~type into a working ADM
version,

‘The motivation for trnnslatlon of a model from
LISP/KEE to ● gcnersl purpose language like ADA ntems
from such advantages as portability, impl.emantation On

pues~bly less-expensLve and ~mall computers, and
fastar operating spaeds,

Regardless of the ultimate language th~ final
form of the model i.e implemented ln, this ‘inal ver-
sion must be fulty ~ested aud verified before being
tnntnlled, Therenftor end.ueers must be tr~irtod to
usc the model,

DoCum en-

Documentation is required to support nnd verify
the requirements, design, and coding phases of the
software development cycle, Once the final sefcware
product is developed, additional documentation is re-
quired co describe its use and to explain its
structure.

Each specific requirement in the requirements
specification document should be identified by numeric
code. Each section of the design specification docu-
ment should reference the appropriate numeric code in
the requirements document that serves as the

motivator/descriptor of the design element. In a
similar fashion, each code segment should refarence

the approprfata design section in the design documenc
which specified that segment of code (possibly through
the use of “comments” written into the coda itself) .

In this way each code segment can be traced back to a
specific requirement in the requirements document,
FLnally, each test or battery of tests should
reference a particular segment of coda which that test
was designed to verify.

l%us a component in a requirements document may
define a specific requirement. This requirement is
related to appropriate design document components,
both text and figures, which define the design modules
and the module structure. The design mndule descrip-
tions ara in turn related to the code that imple: nts
the requirement, and so forth.

Once the final software produce 1s developed,
there are two basic components of documentation that
are required, One Ls a manual for the and-user. Thi..s
manual describes how to use (he software and explains
the assumptions and structure of the model. The
second 1s tha guide for the system or program analyst.
This document explains how to update, I.lodify, or
revise the existing model.

In this article a meta-specification for the
software requirements and design of intelligent dis.
creca naxt-event simulation models hls been presented,
The specification 1s consistent with established prac-
tices for software development as prasented in the
software engineering literature. The specification
has been adapted to taka into consideration the spe-
cialized needs of object.orientad programming
resulting Ln the actor-centered taxonomy. The heart
of the meta.specification is the methodology for re-
quirements specification and design specification of
the model,

The softwara producte developed by use of the
methodology proposed herein are at tha loading edge of
technology in two very synergistic disciplines ..expert
systems and simulation, By Incorporating s~mulation
concepts into expert systems a deeper reasoning
capability is obtained- - ona thAt is able to emulate
the dynamics or behavior of the objsct syster~ or
procees over time. By including expert systems cot~.
cepts into simulation, tha capability to emulate che
reasoning functions of decision-makers ll~voLved with
(and eubsumed by) the object system 1s attained, In
eithar casa the robustness of the technology is
graatly enhanced,


